

			(Excel)	6
	(per	Parcial		
	·		Teórice	10%
EVALUACION	4		(Grete)	
A 6			Pactice.	
4070	200	Poucial) raince	110%
	<u> </u>		Tévrice	107
				•

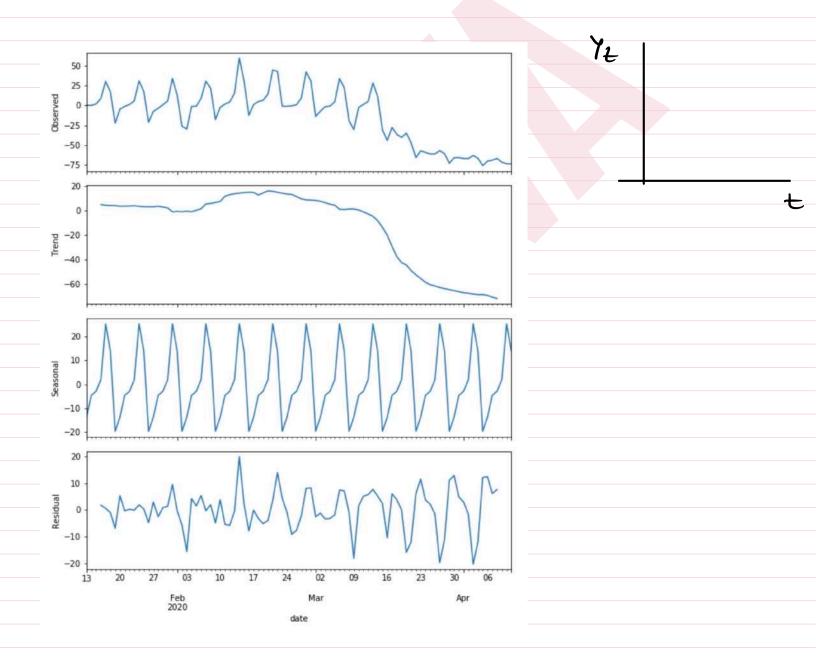
Amalinis serie Tourporales

Amálins Másico | - Masifical serie | II IV - Predictiones - Errores - Selectionar el método más arlecuado a con pocos de tos se obtienen buenos predicciones

Amálisis Estocástico _ metodología Box-Jenkins

- Identificar el proceso correcograting
-) _ Estimar los parámetros y
- VALIDACIÓN SÍ

de necesitan nuchas muestras N>100



T1. INTRODUCCIÓN

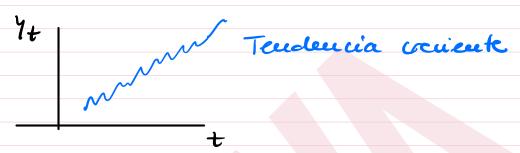
Serie temporal: el conjunto de observaciones referidas a una variable determinada, observada para diferentes momentos del tiempo y siempre para intervalos regulares de tiempo.

Estudiaremos una serie temporal para usar la historia pasada de dicha variable con el objetivo de obtener predicciones para periodos futuros de dicha variable.

T2. ANÁLISIS CLÁSICO DE SERIES TEMPORALES

HETODOLOGÍA CLÁSICA

- 2) Calcular las predicciones con los nérosos adecuedos al tipo de tene
 - 3) deleccionar el mejor MÉTODO | EAM
 - 4) Evaluar la capacided Redictiva del MÉNDO seleccionado ... EPAM



1ch

* COMPONENTES DE UNA SERIE TEMPORAL

1) <u>Tendeuria</u> (Tt): comportamiento de la serie a largo plazo.

7+ Tendencia veciente

- 2) <u>lido ((t)</u>: oscilociones alrededor de la tendencia rempe superiores al año.
 - 3) Estación (St): oscilaciones alrededor de la tendencia inferiores a 1 año.

4) Irregular (It ó Ut): oscilaciones al rededor de la Tendencia que no se pueden asocian mi al Ct ni a la St ... MÉTODOS DE PREVISIÓN

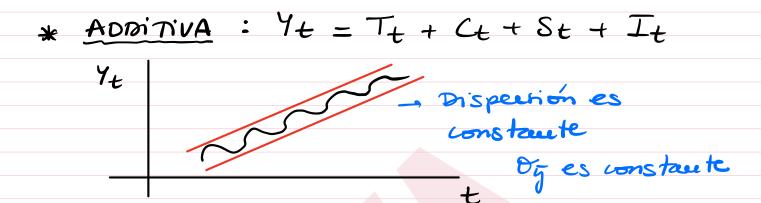
Cualquier serie temporal Yt puede tener 4 componentes:

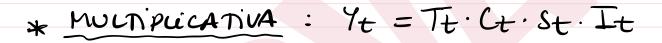
- Componente tendencial (Tt): recoge el comportamiento a l/p de la serie, esta tendencia puede ser creciente o decreciente.
- Componente ciclo (Ct): recoge las oscilaciones por encima o por debajo de la tendencia y son debidos a cambios en la actividad económica.

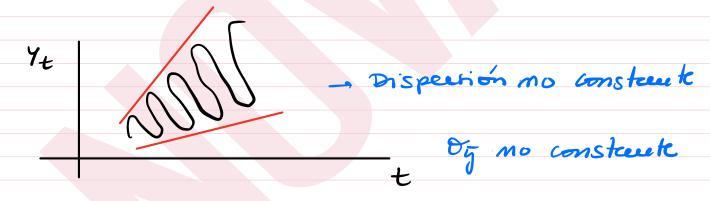
La duración del ciclo es el tiempo que va de pico a pico o de valle a valle. La duración no es estable pero siempre es superior al año.

Como es difícil distinguir entre componente tendencial y componente ciclo, hablaremos de componente tendencia-ciclo.

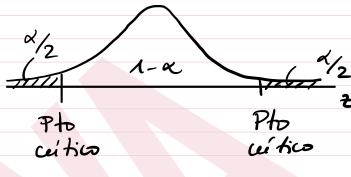
- Componente estacional (St): oscilaciones que se producen año tras año, con una duración menor a 1 año y que se encuentran explicadas por razones de tipo físico-natural o institucionales. Por ejemplo: venta helados, cierre en verano por vacaciones de una empresa.
- Componente irregular (It): recoge las oscilaciones de la serie que no se vean explicadas ni por la tendencia, ni por el ciclo, ni por el componente estacional. Este a su vez se divide en dos componentes:
 - Errática: refleja oscilaciones imprevisibles, pero que a posteriori pueden saberse las causas que la explican.
 - Aleatoria: oscilaciones imprevisibles e inexplicables.







FORMAS DE INTEGRACIÓN / AGREGACIÓN DE SENIES



1) CLASIFICACION DE SERIES TEMPORACES

* CONTRASTE DE DANIEL

Ho: No Tt

HA: Si Tt

196 1-x=095 -196

Normal

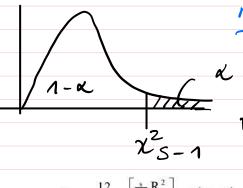
1164

1/64 1-K=019

$$\hat{\mathbf{z}} = (\sqrt{T-1})^{2}$$

121 < Pto _ NORHO _ NOTE

L, no muestras 12/> Pto - Rtho - Si Tt


Daniel:
$$\tau = 1 - \frac{6 * \sum_{t=1}^{T} d_t^2}{T(T^2 - 1)}$$

* CONTRASTE DE KRUSKAU - WALLIS (K-W)

Ho: No St

HA: Si St

S = estación no muestas/auto

Trimestal S=4

 $\begin{array}{c|c} & & & \\ \hline & & \\ \chi^2_{S-1} & & \\ \chi^2_{S-1} & & \\ & &$

Kruskal Wallis: $H = \frac{12}{T(T+1)} \left[\sum_{i=1}^{s} \frac{R_i^2}{T_i} \right] - 3(T+1)$

· Serie tipo I | No Tt -> Daniel: No Rt

LNO St _ K-W: NO RHO

$$y_t = p_0 + It$$

t

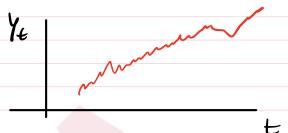
- 1) HÉT. IN GENUO ______ (Estructura voicible)
- 2) MET. MEDIA SIMPLE _____ (Estrutura fija)
- 3) MET. MEDIA MÓNIL _____ (Estructura variable)
 (K)
- 4) MET. ALISADO EXPONENCIA SIMPLE
 - (a) (AES)

(Estructura vocicible)

· Serie tipo II { No Tt -> Daniel : No Rtlo Si St -> K-W: Rtlo

Yt = St + It

- 1) MÉT. IN GENUO ESTACIONAL , (Estructura variable)
- 2) MET. MEDIA SIMPLE ESTACIONAL (Estrutura fija)



Tt - Daniel: RHo

No St _ K-W: NO RHO

- 1) MET. TENDENCIA LINEAL
- 2) MET. DOBLES MEDIAS MÓDICES
- 3) MET. ALISADO EXPONENCIAL DE HOLT vociable (AEH)
- Serie tipo IV / Si Tt Daniel: RHO
 Si St _ K-W: RHO

 $Y_t = T_t + S_t + I_t$

Yt = Tt. St. It

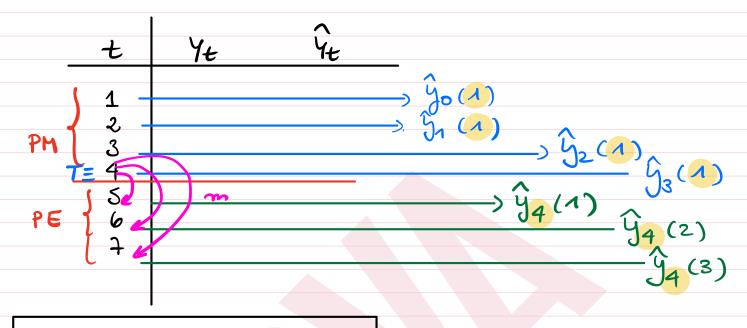
- 1) MET. DESCOMPOSICION
- , tskucha jia
- 2) MET AEH-W
- + Estructura vociable

* NO MENCLATURA

•		\sim	•	
t	1 7t	9t	t	
			_	
1			2000.1 2000.2 2000.3 2000,4	
₹ 2			2000, 2	
PM 3			2000.3	
<u>†=</u> 4			2000,4	
15				
PE 16				
	I			

T = último dato del PM

Periodo muestral: le utiliza para carcular PM (as predicciones


Periodo extra-muestral: se utilita para
PE calcular los erpos

* HETO POS SEMIE TIPO I

1) MÉTODO INGENUO (Estructura variable)

-, todas las prediccio.

mes del PE son

iguales

			^	
	t	Yt	46	
	1	3	(-)	- yo(1) = yo = -
	2	5	3	$y_1(1) = y_1 = 3$
PM				<u> </u>
	3	2	3 5	$\frac{1}{3}$ $\frac{1}$
	4	7	> 2	
	5	5	\ \>\ \-	$-\frac{\hat{y}_4(\lambda)}{2} = \frac{\hat{y}_4}{2} = \frac{1}{2}$
PE	4			
	6	4		$-\frac{1}{3}$ $\frac{1}{3}$ 1
			-	J4 C 7 J4

- Métodos de estructura fija: Son aquellos que usan todas las observaciones del periodo muestral a la vez. para haver los predicciones
- Métodos de estructura variable: Son aquellos que usan de forma sucesiva las observaciones del periodo muestral. para hacer las predicciones

MÉTODO MEMA SIMPLE LESTructura fija)

$$PE: \hat{\mathcal{G}}_{T}(m) = \overline{\mathcal{G}}$$

todas les

predicciones son iquales

9-3-2022

* ERROR DE PREDICCIÓN

	t	Yt	ŶŁ	
	1	3		
00.	2	5	3	
PM	3	ચ	75	
	4	7	>2	
PE	5	5	>> + -	eq(1) = 5-7 = -2
16	6	4) } _	$e_4(2) = 4 - 7 = -3$

* CRITERIOS DE SELECCIÓN DE MÉTODOS

. ERROR ARXUUTO MERIO (EAM)

> n° de muestral de PE

$$EAM = \frac{|-2|+|-3|}{2} = \frac{2+3}{2} = \frac{2!5}{2}$$

· ERROR MADIATION MERIO (ECM)

ECM =
$$\frac{1}{H}$$
 $\frac{2}{2}$ (e_T(m))²

ECM =
$$(-2)^2 + (-3)^2 = 4+9 = 6'5$$

EAM Jon cuiterios pour seleccioner el ECM Jonejor métado. Y de seleccione el que tiene menor EAM y ECM

> Si hay discrepancias. Se elige el que tiene ECM mas pequetro.

3) MÉT MEDIA MOVIL (Estructura vouiable)

del PE son iquales

			K=2
	t	Yt	MME ŶE
	1	3]	$=$ $y_0(1) = MM_0$
1	2	5) _	
PM	3	a) _	$\frac{315}{315}$
	4	- -	415 315 = G3 (1) = MM3
	5	5	J415
PE	16	4	$\frac{1}{3}$ $\frac{1}$

$$MM_2 = \frac{3+5}{2} = 4$$
 $MM_3 = \frac{5+2}{2} = 35$
 $MM_4 = \frac{2+7}{2} = 45 = MM_T$

1°) calcular las MMt

- 2°) Aplicar mét. INGENUO sobre les MMZ
- las k primeras predicciones no se pueden hacer
- _ la 1ª predicción es le de la posición K+1

Hablamos du K:

. K es pequeña

- Serie menos suoviteda
- _ "mayor ajuste"
 - mas importancia a los valores cercanos
 - tiende a MET. INGENUO

MEDIA MOVIL POUR K = 1 - MET. INCENUO

. K es graudl

- Serie man suavizada
- "menor ajuste"
- menos importancia als valores cercanos
- Tiende a MEDIA SIMPLE

MEDIA MOVIL POWE K = T , MEDIA SIMPLE

4) MÉT. AUSADO EXPONENCIA SIMPLE (AES) (Est. vouiable)

 $d \equiv constante de alisado$ 0 < d < 1

la todas las predicciones del PE son iqueles

AES & = 0 6

	t	Yt	9t			
	1	3				
4	2	5	3_	arranque	CON MET. INGENU	D
PM	3	2	412			
	4	÷	2'88			
	5	5	5′352			
PE	6	4	s'3s2			
	•					

$$t = 3 - \hat{y}_{2}(1) = \alpha \cdot y_{2} + (1 - \alpha) \hat{y}_{1}(1) =$$

$$t=4$$
 - $\hat{y}_3(1) = \alpha \cdot y_3 + (1-\alpha)\hat{y}_2(1) =$
= $0'6\cdot 2 + 0'4\cdot 4'2 = 2'88$

$$t=5$$
 $\hat{y}_{4}(1) = \alpha \cdot y_{4} + (1-\alpha)\hat{y}_{3}(1) =$

$$= 0'6.7 + 0'4.2'88 = 5'352$$

$$t=6 \quad \hat{y}_4(2) = \alpha \cdot y_4 + (1-\alpha) \hat{y}_2(2) = 06.7 + 04.288 = 5352$$

* MECAMISMO DE CORRECCION DE ERROR

$$\hat{y}_{t}(\Lambda) = \alpha y_{t} + (\Lambda - \alpha) \hat{y}_{t-1}(\Lambda) =$$

$$= \alpha y_{t} + \hat{y}_{t-1}(\Lambda) - \alpha \hat{y}_{t-1}(\Lambda) =$$

$$= \hat{y}_{t-1}(\Lambda) + \alpha (y_{t} - \hat{y}_{t-1}(\Lambda))$$

$$\hat{e}_{t-1}(\Lambda)$$

error de prediction.

Hablamos de a:

. a pequeña

- menor importancia al error de predicción
 - de le mas suavizade - "menor ajuste"
 - menos importancia a los valores cucanos
 - _ tiende a MENIA SIMPLE

. & Saude , _ x

- mas unpersueia al error de padicción
 - _ "mayor ajus te"
 - más importancia a los valores cercanos
 - tiende a MÉTODO INCENDO

NOVA estudis BARCELONA

$$\hat{y}_{t}(1) = \alpha y_{t} + (1-\alpha) \hat{y}_{t-1}(1)$$

$$\hat{y}_{t}(1) = \alpha y_{t} + (1-\alpha) \hat{y}_{t-1}(1)$$

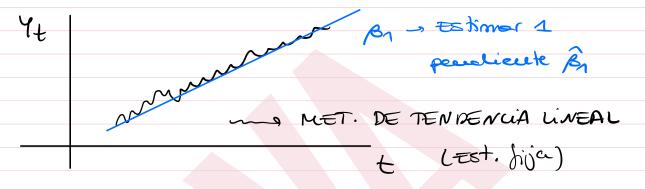
$$\hat{y}_{t}(1) = y_{t} - n \text{ MET. } \text{ TNGENUO}$$

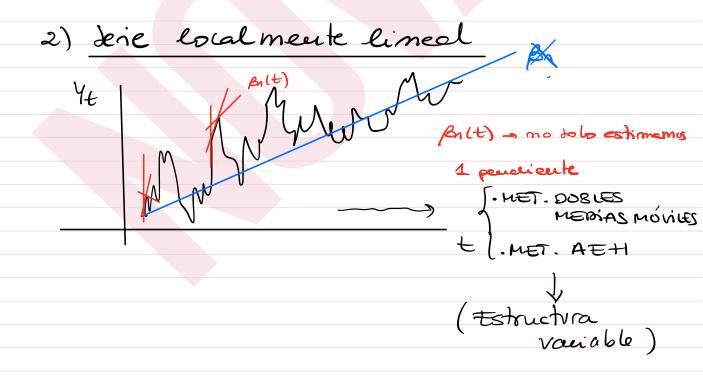
1) MÉT. INCENUO ESTACIONAL LEST. vouiable)

	t	44	Ŷŧ	
	I. 2000 II. 2000	2 5		
PМ	I. 2001 II. 2001	3 }	\frac{2}{5}	
	I. 2002 II. 2002	2}) { 3 }	
PE	I .2003		∫ ≥ 6	
	T. 2004) 2	
	11.2004		16	
	_			

2) MÉT MEDIA SIMPLE ESTACIONAL (Estr. Sija)

	•	\wedge	
t	¥	9t	
T. 2000	2	2'3	
IL . 2000	5	6	
I. 2001	3	2'3	
II . 200 l	7	6	$\sqrt{3}$ = $\frac{2+3+2}{2}$ = 2'3
			3
I. 2002	೩	2'3	
II . 2002	6	6	V = 5+7+6 = 6
			<u>у</u> ш 3
I.2003		2'3	
II . 2003		6	
± 2 254		2,12	
		25	
11.2004		6	
	I. 2000 II. 2000 II. 2001 II. 2001 II. 2002 II. 2003	I. 2000 2 II. 2000 5 II. 2001 3 II. 2001 7 II. 2002 2 II. 2003 II. 2003 II. 2004	T. 2000 2 2'3 T. 2001 3 2'3 T. 2001 7 6 T. 2002 2 2'3 T. 2003 6 T. 2003 6 T. 2004 2'3





Serie tipo III) Si Tt

1) Serie totalmente lineal

1) MET TENDENCIA LINEAL (Estuc. Sija)

Mètode de la tendència lineal:

- Període mostral: $\hat{y}_{t}(1) = \hat{\beta}_{0} + \hat{\beta}_{1} * (t+1)$ t = 1, 2, ..., T
- Període extramostral: $\hat{y}_T(m) = \hat{\beta}_0 + \hat{\beta}_1 * (T+m) \quad m = 1, 2, ..., H$

$$\hat{\beta}_{1} = \frac{\sum_{t=1}^{T} t \ y_{t} - \bar{y} \sum_{t=1}^{T} t}{\sum_{t=1}^{T} t^{2} - \bar{t} \sum_{t=1}^{T} t} \qquad \qquad \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{t}$$

$$\hat{\beta}_1 = \frac{\cos(\gamma, t)}{\operatorname{Vol}(t)} = \frac{\operatorname{Syt}}{\operatorname{S}_t^2}$$

2) MÉT. DOBLES MEDIAS MÓNIES (FET, vouiable)

K = longitud de la media máil

Mètode de les Dobles Mitjanes Mòbils: $\hat{T}_t = 2MM_t - MM_t' \quad \hat{\beta}_1(t) = \frac{2}{\kappa_{t-1}}(MM_t - MM_t')$

Període mostral:
$$\hat{y}_t(1) = \hat{T}_t + \hat{\beta}_1(t)$$

$$t = 2K, 2K+1, T$$

Període extramostral:
$$\hat{y}_T(m) = \hat{T}_T + \hat{\beta}_1(T) * m$$
 m = 1, 2, , H

del PE no son iquales
$$\begin{array}{c}
\hat{T}_{T} = 2MM_{T} - MM'_{T} \\
\hat{S}_{1}(T) = \frac{2}{K-1} (MM_{T} - MM'_{T})
\end{array}$$

_	t	Y+	MME	MM,f
)			
PM				
	T		MMT	Mh ¹ T

3) MÉT AUSADO EXPONENCIAL DE HOLT (tst. variable)

A€H

Mètode de l'Allisat Exponencial de Holt:

• Període mostral:
$$\hat{y}_t(1) = \hat{T}_t + \hat{\beta}_1(t)$$

• Període extramostral: $\hat{y}_T(m) = \hat{T}_T + \hat{\beta}_1(T) * m$

$$\hat{T}_t = \alpha Y_t + (1 - \alpha) \hat{Y}_{t-1}(1)$$

$$\hat{\beta}_1(t) = \gamma \left[\hat{T}_t - \hat{T}_{t-1} \right] + (1 - \gamma) \hat{\beta}_1(t-1)$$

las predictiones

del PE no son iquales

Pregunta 14

No s'ha respost Puntuat sobre 1,00

Marca la pregunta

En el método del Alisado Exponencial Simple:

AES (a) - serie I

Trieu-ne una:

Solamente es aplicable para las series con componente tendencial y sin componente estacional (series tipo 3)

★b. Si K=5, la predicción para el período t+1 será una media de la serie observada en los 5
períodos previos

್ರ್ Cuanto menor sea ಡ, más suave resulta la serie ajustada

 Únicamente es aplicable para series sin componente tendencial y con componente estacional (series tipo 2)

La resposta correcta és: Cuanto menor sea α, más suave resulta la serie ajustada.

Pregunta 23

No s'ha respost Puntuat sobre 1,00

Marca la pregunta

El componente de una serie temporal que recoge las oscilaciones de duración inferior al año, se denomina:

Trieu-ne una:

a. Tendencia

b. Estacionariedad

c. Ciclo

d. Estacionalidad

La resposta correcta és: Estacionalidad.

Pregunta 32

No s'ha respost Puntuat sobre 1.00

Marca la pregunta

¿Cuál de las siguientes afirmaciones es CIERTA?

Trieu-ne una:

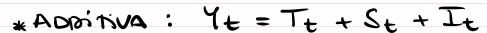
Xa. Para ver si una serie tiene componente estacional, utilizamos el contraste de Daniel.

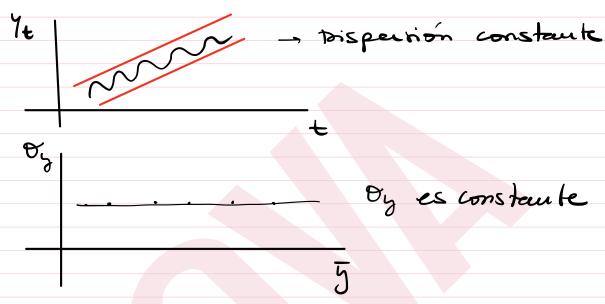
b. Cuanto menor sea la constante de alisamiento de la tendencia, más importancia le damos a los errores de predicción.

ec. El método de descomposición es de estructura variable.

d. Cuanto menor sea la longitud de la media móvil, la serie predicha será más sensible a los valores recientes de la serie original.

La resposta correcta és: Cuanto menor sea la longitud de la media móvil, la serie predicha será más sensible a los valores recientes de la serie original..





Seie tipo IV) Si TE

SIVEN; = 0 _ ADDITIVA

1) MÉT DESCOMPOSICION (ESK. fija)

Mètode de descomposició (esquema additiu):

- Període mostral: $\hat{y}_t(1) = \hat{T}_{t+1} + \hat{S}_i = \hat{\beta}_0 + \hat{\beta}_1 * (t+1) + \hat{S}_i$ t = 1, 2, ..., T
- Període extramostral: $\hat{y}_T(m) = \hat{T}_{T+m} + \hat{S}_i = \hat{\beta}_0 + \hat{\beta}_1 * (T+m) + \hat{S}_i = 1, 2, ..., H$

Mètode de descomposició (esquema multiplicatiu):

- Període mostral: $\hat{y}_t(1) = \hat{T}_{t+1} * \hat{S}_t = [\hat{\beta}_0 + \hat{\beta}_1 * (t+1)] * \hat{S}_t$ t = 1, 2, ..., T
- Període extramostral: $\hat{y}_T(m) = \hat{T}_{T+m} * \hat{S}_i = [\hat{\beta}_0 + \hat{\beta}_1 * (T+m)] * \hat{S}_i \quad m = 1, 2,...,H$

Desestacionalizar la serie , separar la Estación

IVEB: - Índice de variación Estacional Brutos

IVEN: - Índice de variación Estacional Neto

IVEN: = Si

IVEN , la variación de la sene <u>en promodio</u>
para ese periodo respecto a la Tendencia

2) MÉT. ALISADO EXPONENCIAL DE HOLT-WINTERS

(€st. variable)

Mètode de l'allisat exponencial de Holt-Winters (esquema additiu):

Període mostral:
$$\hat{y}_t(1) = \hat{T}_t + \hat{\beta}_1(t) + \hat{S}_i(t-s+1)$$
 $t = 1, 2, ..., T$ $i=1, 2,s$

Període extramostral:
$$\hat{y}_{T}(m) = \hat{T}_{T} + \hat{\beta}_{1}(T) * m + \hat{S}_{i}(T - s + m) \quad m = 1, 2, ..., H$$

$$\hat{T}_{t} = \alpha \Big[Y_{t} - \hat{S}_{i}(t - s) \Big] + (1 - \alpha) \Big[\hat{T}_{t-1} + \hat{\beta}_{1}(t - 1) \Big], \quad \hat{\beta}_{1}(t) = \gamma \Big[\hat{T}_{t} - \hat{T}_{t-1} \Big] + (1 - \gamma) \hat{\beta}_{1}(t - 1)$$

$$\hat{S}_{i}(t) = \delta \Big[Y_{t} - \hat{T}_{t} \Big] + (1 - \delta) \hat{S}_{i}(t - s)$$

Mètode de l'allisat exponencial de Holt-Winters (esquema multiplicatiu):

Període mostral:
$$\hat{y}_t(1) = [\hat{T}_t + \hat{\beta}_1(t)] * \hat{S}_i(t-s+1)$$
 $t = 1, 2, ..., T$ $i=1, 2,s$

Període extramostral:
$$\hat{y}_{T}(m) = [\hat{T}_{T} + \hat{\beta}_{1}(T) * m] * \hat{S}_{i}(T - s + m) \quad m = 1, 2, ..., H$$

$$\hat{T}_{t} = \alpha \Big[Y_{t} / \hat{S}_{i}(t - s) \Big] + (1 - \alpha) \Big[\hat{T}_{t-1} + \hat{\beta}_{1}(t - 1) \Big], \quad \hat{\beta}_{1}(t) = \gamma \Big[\hat{T}_{t} - \hat{T}_{t-1} \Big] + (1 - \gamma) \hat{\beta}_{1}(t - 1)$$

$$\hat{S}_{i}(t) = \delta \Big[Y_{t} / \hat{T}_{t} \Big] + (1 - \delta) \hat{S}_{i}(t - s)$$

Constante de alisado de la
$$Tt$$
 $0 < x < 1$
Constante de alisado de la β_A $0 < x < 1$
Constante de alisado de la St $0 < \delta <$

* Lukrius de léculon de Métalos | EAM | Louipración

* Evaluar la copocidoch Redictiva - FAM

. ERROR PORCENTURE ABJOLUTO MEDIO (EPAM)

$$EPAH = \frac{100}{H} \frac{3}{9} \left(\frac{eT(m)}{9} \right)$$

