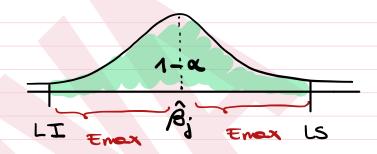

ESTADÍSTICA INFERENCIAL

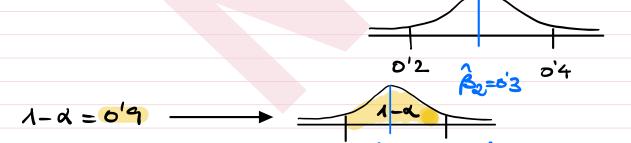
PARÁMETROS: valor constante que caracterite la población "desconocidos" Junciones maternáticas que dependen le la muestra

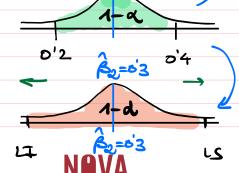
INFERENCIA

- $\neq \leq h \mod puntual \hat{\beta}_j \longrightarrow \hat{\beta}_2 = 0'3$
- Interalos de configura (IC) Bj E [0'2,0'4] 1-d
- contrastes de hipótesis (CH)

CONFINNS




SAUSATC


$$\beta_{j} \in \left[\hat{\beta}_{j} + t_{N-k} \cdot S\hat{\beta}_{j}\right]$$
 $1-a$

$$S_{\beta_i} = \sqrt{\hat{V}_{\alpha_i}(\hat{\beta}_i)}$$

$$\hat{\beta}_{2} = \frac{0'2 + 0'4}{2} = 0'3$$

sumentan la acuphitud

A mayor Amplitud __ Menor pecition

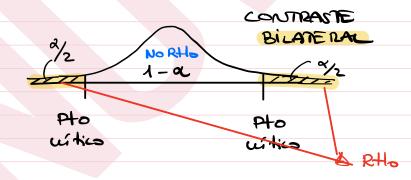
burneutan Amplitud - 1 (1-a)

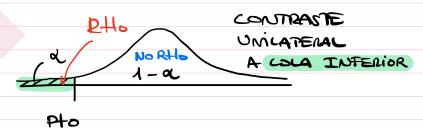
CONFIANZA (1-a)

SABAT

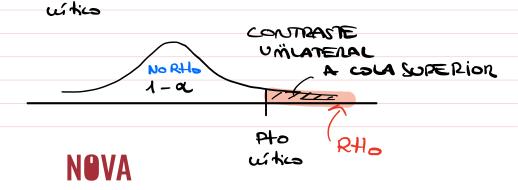
$$\beta_{j} \in \left[\hat{\beta}_{j} + t_{N-k} \cdot S\hat{\beta}_{j}\right]$$
 $A - \alpha$

$$P(\hat{\beta}_j - t_{N-K} \cdot S\hat{\beta}_j) = 1 - \alpha$$
LI

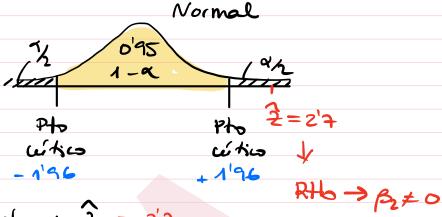

NUVA

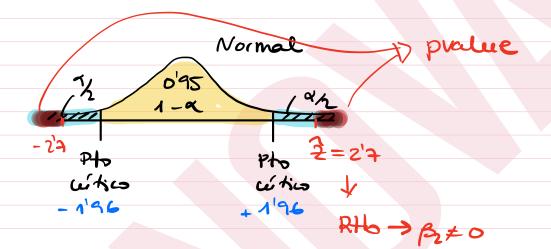

CONTRASTES DE HIPOTESS

$$\begin{array}{c|c} & \beta_2 \neq 0 \\ & \beta_2 > 0 \\ & \beta_2 < 0 \end{array}$$


Condusión de CH son a mivel publicional.

DE CONTRASTES * TIPOS


3) to : Bj = 0 HA: B) >0



Ejemplo:

Estadístico de prueba: 2 = 2/7

P-value, es el árez que acumula el Estadístic de prueba y se compara con d (higmificación)

pu > a -, No RHO

pv <d -> Rtb

1-9=09 - X=01

tjeenplo:

Ho: B2 =0

HA: B2 = 0

2=1'2 Pto who with 1/64

No RHO - POZ=O

Estadístico: 2 = 12

1 pv > a - No R+lo

ESTADÍSTICA INFERENCIAL

$$\beta = (x' \cdot x)^{-1} x' Y = \begin{bmatrix} k_n \\ k_n \\ \vdots \\ k_n \end{bmatrix}$$

* IC
$$\beta_j \in \left[\hat{\beta}_j \mp t_{N-K} \cdot S \hat{\beta}_j\right] 1-\alpha$$

. 1-d = contianza → probabilitidad de que el verde dero valor del parámetro poblacional coté dentro del intervalo.

. a = 6.6 m Ficación o ERROR.

d → probabilidad de que el

verde dero valor del parámetro poblacional <u>no</u>

coté dentro del intervalo.

Relación entre IC y CH

Ejemplo 1:

$$1-x=0'95$$

$$x=0'05$$

Ejemplo 2:

PROPIEDADES DE LOS ESTIMADORES

* SESGO DE UN ESTIMADOR:

Ses 30(
$$\hat{\alpha}$$
) = E(e($\hat{\alpha}$)) = E(α - $\hat{\alpha}$) = E(α) - E($\hat{\alpha}$) = α - E($\hat{\alpha}$)

CHE V. α

Parametro

(ctte)

 $E(\alpha) = \alpha$ $\Rightarrow \alpha > E(\alpha)$ $\Rightarrow \alpha > E(\alpha)$ $\Rightarrow \alpha > E(\alpha)$ $\Rightarrow \alpha < E(\alpha)$ $\Rightarrow \alpha < E(\alpha)$

Sesso(
$$\hat{\alpha}$$
) = 0 \rightarrow E($\hat{\alpha}$) = α \rightarrow Insestable (No established)

Sesso($\hat{\alpha}$) \neq 0 \rightarrow E($\hat{\alpha}$) \neq α \rightarrow SESEADO (established)

* ERROR CLADRATICO MEDIO:

$$ECM(\hat{a}) = (sesgo(\hat{a}))^2 + Var(\hat{x})$$

* CONSISTENCIA DE UN ESTIMADOR:

* EFICIENCIA DE UN ESTIMADOR:

ECM (ân) < ECM (âz)

à, es mas épiciente en términos relatios

INSESGADOS - Comparan las Vaniantes

Vai(R₁) < Vai(R₁) -> R₁ es mas eficiente NOVA que R₂ en Konninos electio

